Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
J Ethnopharmacol ; 328: 118103, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38527573

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hedychium coccineum rhizome is an anti-inflammatory ethnomedicine used to remedy inflammation-related swelling and bronchial asthma. AIM OF THE STUDY: The study aimed to analyze the phytochemical constituents of H. coccineum rhizome essential oil (EO) and evaluate its in vitro and in vivo anti-inflammatory effects and underlying mechanisms. MATERIALS AND METHODS: Phytochemical constituents of H. coccineum rhizome EO were analyzed using GC-FID/MS. In RAW264.7 macrophages induced by LPS, blockade of PGE2, NO, IL-1ß, IL-6, and TNF-α secretion by H. coccineum rhizome EO was measured, and then Western blot, qRT-PCR, and immunofluorescent staining were used to evaluate its underlying mechanisms. Moreover, we used the xylene-induced ear edema model for testing anti-inflammatory potential in vivo and examined auricular swelling as well as tissue and serum contents of IL-1ß, IL-6, and TNF-α. RESULTS: EO's main components were E-nerolidol (40.5%), borneol acetate (24.8%), spathulenol (4.5%), linalool (3.8%), elemol (3.5%), and borneol (3.4%). In RAW264.7 cells stimulated by LPS, EO downregulated the expression of pro-inflammatory enzyme (iNOS and COX-2) genes and proteins, thereby suppressing pro-inflammatory mediators (NO and PGE2) secretion. Simultaneously, it reduced TNF-α, IL-1ß, and IL-6 release by downregulating their mRNA expression. Besides, H. coccineum EO attenuated LPS-stimulated activation of NF-κB (by reducing IκBα phosphorylation and degradation to inhibit NF-κB nuclear translocation) and MAPK (by downregulating JNK, p38, and ERK phosphorylation). In xylene-induced mouse ear edema, EO relieved auricular swelling and lowered serum and tissue levels of TNF-α, IL-1ß, and IL-6. CONCLUSIONS: H. coccineum EO had powerful in vivo and in vitro anti-inflammatory effects by inhibiting MAPK and NF-κB activation. Hence, H. coccineum EO should have great potential for application in the pharmaceutical field as a novel anti-inflammatory agent.


Asunto(s)
Canfanos , Aceites Volátiles , Zingiberaceae , Animales , Ratones , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Rizoma/metabolismo , Aceites Volátiles/efectos adversos , Lipopolisacáridos/farmacología , Xilenos , Antiinflamatorios/efectos adversos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Células RAW 264.7 , Edema/inducido químicamente , Edema/tratamiento farmacológico , Fitoquímicos/uso terapéutico , Zingiberaceae/metabolismo
2.
J Ethnopharmacol ; 325: 117845, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38307355

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Kaempferia galanga L., a medicinal and edible Plant, was widely distributed in many Asian and African counties. It has been traditionally used to treat gastroenteritis, hypertension, rheumatism and asthma. However, there is a lack of modern pharmacology studies regarding its anti-gastric ulcer activity. AIM OF THE STUDY: The objective of this study is to investigate the protective effects of an extract from K. galanga L. rhizome (Kge) and its active components kaempferol and luteolin on ethanol-induced gastric ulcer. MATERIALS AND METHODS: The kge was prepared by ultrasonic-assisted extraction, and the contents of kaempferol and luteolin were determined by HPLC. The mice were randomly divided into seven groups: blank control (0.5 % CMC-Na; 0.1 mL/10 g), untreatment (0.5 % CMC-Na; 0.1 mL/10 g), Kge (100, 200 and 400 mg/kg), kaempferol (100 mg/kg) and luteolin (100 mg/kg) groups. The mice were treated intragastrically once daily for 7 days. At 1 h post the last administration, the mice in all groups except the blank control group were intragastrically administrated with anhydrous alcohol (0.1 mL/10 g) once to induce gastric ulcer. Then, fasting was continued for 1 h, followed by sample collection for evaluation by enzyme-linked immunosorbent assay and real-time reverse transcription polymerase chain reaction assay. RESULTS: The contents of kaempferol and luteolin in Kge were determined as 3713 µg/g and 2510 µg/g, respectively. Alcohol induced severely damages with edema, inflammatory cell infiltration and bleeding, and the ulcer index was 17.63 %. After pre-treatment with Kge (100, 200 and 400 mg/kg), kaempferol and luteolin, the pathological lesions were obviously alleviated and ulcer indices were reduced to 13.42 %, 11.65 %, 6.54 %, 3.58 % and 3.85 %, respectively. In untreated group, the contents of Ca2+, myeloperoxidase, malondialdehyde, NO, cyclic adenosine monophosphate and histamine were significantly increased, while the contents of hexosamine, superoxide dismutase, glutathione peroxidase, and prostaglandin E2 were significantly decreased; the transcriptional levels of IL-1α, IL-1ß, IL-6, calcitonin gene related peptide, substance P, M3 muscarinic acetylcholine receptor, histamine H2 receptor, cholecystokinin 2 receptor and H+/K+ ATPase were significantly increased when compared with the blank control group. After pre-treatment, all of these changes were alleviated, even returned to normal levels. Kge exhibited anti-gastric ulcer activity and the high dose of Kge (400 mg/kg) exhibited comparable activity to that of kaempferol and luteolin. CONCLUSION: The study showed that K. galanga L., kaempferol, and luteolin have protective effects against ethanol-induced gastric ulcers. This is achieved by regulating the mucosal barrier, oxidative stress, and gastric regulatory mediators, as well as inhibiting the TRPV1 signaling pathway and gastric acid secretion, ultimately reducing the gastric ulcer index.


Asunto(s)
Alpinia , Antiulcerosos , Úlcera Gástrica , Ratones , Animales , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/prevención & control , Etanol/toxicidad , Quempferoles/farmacología , Quempferoles/uso terapéutico , Rizoma/metabolismo , Úlcera/tratamiento farmacológico , Luteolina/farmacología , Histamina/metabolismo , Mucosa Gástrica , Antiulcerosos/farmacología , Antiulcerosos/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/metabolismo
3.
J Ethnopharmacol ; 325: 117866, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38350504

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gentiana kurroo Royle is a medicinal plant mentioned as Traymana in Ayurveda. In the folklore, it is used to cure fever, stomach ache, skin diseases and liver disorders. However, limited reports are available on the therapeutic potential of Gentiana kurroo Royle against alcohol-induced liver damage. AIM OF THE STUDY: To assess the effectiveness of the hydroethanolic extract of Gentiana kurroo Royle rhizome (GKRE) against alcohol-induced liver injury and explore the mechanism of action. MATERIALS AND METHODS: GKRE was characterized using UHPLC-QTOF-MS/MS. The binding affinity of the identified compound was studied in silico. In vitro studies were performed in the Huh-7 cell line. An acute oral toxicity study (2 g/kg BW) of GKRE was done in rats following OECD 420 guidelines. In the efficacy study, rats were treated with 50% ethanol (5 mL/kg BW, orally) for 4 weeks, followed by a single intraperitoneal dose of CCl4 (30%; 1 mL/kg BW) to induce liver injury. After 4th week, the rats were treated with GKRE at 100, 200 and 400 mg/kg BW doses for the next fifteen days. The biochemical and antioxidant parameters were analyzed using commercial kits and a biochemistry analyzer. Histopathology, gene and protein expressions were studied using qRT PCR and western blotting. RESULTS: Thirteen compounds were detected in GKRE. Few compounds showed a strong interaction with the fibrotic and inflammatory proteins in silico. GKRE reduced (p < 0.05) the ethanol-induced ROS production and inflammation in Huh-7 cells. The acute oral toxicity study revealed no adverse effect of GKRE in rats at 2 g/kg BW. GKRE improved (p < 0.05) the body and liver weights in ethanol-treated rats. GKRE improved (p < 0.05) the mRNA levels of ADH, SREBP1c and mitochondrial biogenesis genes in the liver tissues. GKRE also improved (p < 0.05) the liver damage markers, lipid peroxidation and levels of antioxidant enzymes in the liver. A reduced severity (p < 0.05) of pathological changes, fibrotic tissue deposition and caspase 3/7 activity were observed in the liver tissues of GKRE-treated rats. Further, GKRE downregulated (p < 0.05) the expression of fibrotic (TGFß, αSMA and SMADs) and inflammatory markers (TNFα, IL6, IL1ß and NFκB) in the liver. CONCLUSION: GKRE showed efficacy against alcohol-induced liver damage by inhibiting oxidative stress, apoptosis, inflammation and fibrogenesis in the liver.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Gentiana , Hepatopatías Alcohólicas , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Etanol/toxicidad , Gentiana/química , Rizoma/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Espectrometría de Masas en Tándem , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Estrés Oxidativo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hígado , Hepatopatías Alcohólicas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
4.
J Ethnopharmacol ; 323: 117642, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38151180

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Paris polyphylla, as a traditional Chinese herbal medicine, was often used to relieve inflammation and pain. Rhizoma Paridis saponins (RPS) as the main active components of Paris polyphylla have excellent analgesic effects. AIM OF THE STUDY: Determine the analgesic material basis of RPS. MATERIALS AND METHODS: LC-MS/MS was used to analyze RPS, plasma after intravenous injection of RPS, and oral administration of RPS. H22 plantar pain model was established to explore the analgesic material basis of RPS. Moreover, correlation analysis, network pharmacology, RT-PCR and molecular docking were applied in this research. RESULTS: RPS had dose-dependently analgesic effects in acetic acid- and formalin-induced pain models. LC-MS/MS detection indicated that diosgenin as the metabolite of RPS mainly distributed in brain tissues. The addition of antibiotics increased the anti-tumor effect of RPS, but reduced its analgesic effect. Network pharmacology, RT-PCR and molecular docking showed that diosgenin exerted its analgesic effect through SRC and Rap1 signaling pathway. CONCLUSION: Diosgenin exhibited analgesic effects, while saponins had good anti-tumor effects in RPS. This discovery provided a better indication for the later application of RPS in anti-tumor and analgesic settings.


Asunto(s)
Diosgenina , Liliaceae , Melanthiaceae , Neoplasias , Saponinas , Saponinas/farmacología , Saponinas/uso terapéutico , Saponinas/metabolismo , Cromatografía Liquida , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Rizoma/metabolismo , Neoplasias/tratamiento farmacológico , Dolor/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico
5.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37834245

RESUMEN

Sarcopenia is a progressive muscle disease characterized by the loss of skeletal muscle mass, strength, function, and physical performance. Since the disease code was assigned, attention has been focused on natural products that can protect against muscle atrophy. Cibotium barometz (Cibotium Rhizome) has been used as an herbal medicine for the treatment of bone or joint diseases in Asian countries. However, no studies have identified the mechanism of action of Cibotium Rhizome on muscle atrophy related to sarcopenia at the site of myotubes. The aim of this study was to investigate the improvement effect of the ethanol extract of Cibotium Rhizome (ECR) on dexamethasone-induced muscle atrophy in an in vitro cell model, i.e., the C2C12 myotubes. High-performance liquid chromatography was performed to examine the phytochemicals in ECR. Seven peaks in the ECR were identified, corresponding to the following compounds: protocatechuic acid, (+)-catechin hydrate, p-coumaric acid, ellagic acid, chlorogenic acid, caffeic acid, and ferulic acid. In atrophy-like conditions induced by 100 µM dexamethasone for 24 h in C2C12, ECR increased the expression of the myosin heavy chain, p-Akt, the p-mammalian target of rapamycin (mTOR), p-p70S6K, and repressed the expression of regulated in development and DNA damage responses 1 (REDD1), kruppel-like factor 15 (KLF 15), muscle atrophy F-box, and muscle-specific RING finger protein-1 in C2C12. In addition, ECR alleviated dexamethasone-induced muscle atrophy by repressing REDD1 and KLF15 transcription in C2C12 myotubes, indicating the need for further studies to provide a scientific basis for the development of useful therapeutic agents using ECR to alleviate the effects of skeletal muscle atrophy or sarcopenia.


Asunto(s)
Sarcopenia , Tracheophyta , Rizoma/metabolismo , Sarcopenia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Extractos Vegetales/química , Dexametasona/uso terapéutico , Músculo Esquelético/metabolismo
6.
J Trace Elem Med Biol ; 80: 127306, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37757646

RESUMEN

BACKGROUND: Alpinia officinarum is a member of the ginger family (Zingiberaceae), which is widely cultivated in Asia and traditionally used for its anti-inflammatory, antimicrobial, and antihyperlipidemic qualities. This study aimed to evaluate the effect of Alpinia officinarum rhizome extract (AORE) on cisplatin (CP)-induced hepatotoxicity in rats. METHODS: Forty-four male rats were divided into six groups including the control group, AORE control group, CP control group, and three groups of CP (7 mg/kg dose, on the 10th day) with AORE (at concentrations of 100, 200 and 400 mg/kg, daily for 14 days). After 14 days, the rats' livers were removed and their liver function was assessed using biochemical marker enzymes including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) activities and albumin, total protein, and total bilirubin (T. bilirubin). Oxidative stress was assessed by evaluating malondialdehyde concentration and hepatic superoxide dismutase activity, histopathological and immunohistochemical tests were also conducted. RESULTS: Results demonstrated that treatment with AORE reduced the toxicity in levels of the hepatic biomarkers in cp-induced groups. AORE treatment decreased oxidative stress and improved histopathological indexes. Furthermore, immunohistochemical (IHC) investigation showed the B-cell lymphoma 2 (Bcl-2) upsurging and p53 downregulating expression exhibiting the recovery following AORE administration. CONCLUSION: The founding suggested that AORE administration has positive biochemical, histopathological, and immunohistochemical impacts on the ameliorating of hepatotoxicity in CP-induced rats.


Asunto(s)
Alpinia , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratas , Masculino , Animales , Cisplatino/farmacología , Alpinia/metabolismo , Rizoma/metabolismo , Hígado/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Estrés Oxidativo , Bilirrubina , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Aspartato Aminotransferasas
7.
PLoS One ; 18(7): e0287969, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37450442

RESUMEN

The rhizome is an economically important part of ginger (Zingiber officinale Rosc.). However, the mechanism of ginger rhizome enlargement remains unclear. In this study, we performed an integrated analysis of the hormone content and transcriptome of ginger at three rhizome enlargement stages: initial enlargement (S1), middle enlargement (S2), and peak enlargement (S3). With rhizome enlargement, the levels of the hormones zeatin (ZT), gibberellic acid (GA), indole acetic acid (IAA), and jasmonic acid (JA) were significantly increased, and this increase was positively correlated with rhizome diameter. Transcriptomic analysis identified a large number of differentially expressed genes (DEGs); the number of DEGs were 2,206 in the transition from S1 to S2, and 1,151 in the transition from S2 to S3. The expression of several genes related to hormone biosynthesis and signalling and cell division or expansion, and transcription factors was significantly altered, which suggests that these genes play essential roles in rhizome enlargement. The results of correlation analysis suggested that the process of ginger rhizome enlargement may be primarily related to the regulation of endogenous cytokinin, GA3, auxin, and JA biosynthesis pathways and signal transduction; GRAS, HB, MYB, MYB122, bZIP60, ARF1, ARF2, E2FB1, and E2FB2, which may regulate the expression of rhizome formation-related genes; and CYC2, CDKB1, CDKB2, EXPA1, and XTH7, which may mediate cell division and expansion. These results provide gene resources and information that will be useful for the molecular breeding in ginger.


Asunto(s)
Rizoma , Rizoma/genética , Rizoma/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Hormonas/metabolismo
8.
J Nat Prod ; 86(5): 1230-1239, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37146221

RESUMEN

Amethystoidesic acid (1), a triterpenoid with an unprecedented 5/6/6/6 tetracyclic skeleton, and six undescribed diterpenoids, amethystoidins A-F (2-7), were isolated from the rhizomes of Isodon amethystoides along with 31 known di- and triterpenoids (8-38). Their structures were fully elucidated via extensive spectroscopic analysis including 1D and 2D NMR, high-resolution electrospray ionization mass spectrometry (HRESIMS), and electronic circular dichroism (ECD) calculations. Compound 1 is the first example of a triterpenoid possessing a rare ring system (5/6/6/6) derived from a contracted A-ring and the 18,19-seco-E-ring of ursolic acid. Compounds 6, 16, 21, 22, 24, and 27 significantly inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, which could be partly mediated by the downregulation of LPS-induced inducible nitric oxide synthase (iNOS) protein expression.


Asunto(s)
Isodon , Triterpenos , Isodon/química , Rizoma/metabolismo , Triterpenos/farmacología , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/química , Óxido Nítrico , Estructura Molecular
9.
BMC Plant Biol ; 23(1): 221, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101108

RESUMEN

BACKGROUND: Rhizome is vital for carbon and nitrogen metabolism of the whole plant. However, the effect of carbon and nitrogen in the rhizome on rhizome expansion remains unclear. RESULTS: Three wild Kentucky bluegrass (Poa pratensis L.) germplasms with different rhizome expansion capacity (strong expansion capacity, 'YZ'; medium expansion capacity, 'WY'; and weak expansion capacity, 'AD') were planted in the field and the rhizomes number, tiller number, rhizome dry weight, physiological indicators and enzyme activity associated carbon and nitrogen metabolisms were measured. Liquid chromatography coupled to mass spectrometry (LC-MS) was utilized to analyze the metabolomic of the rhizomes. The results showed that the rhizome and tiller numbers of the YZ were 3.26 and 2.69-fold of that of the AD, respectively. The aboveground dry weight of the YZ was the greatest among all three germplasms. Contents of soluble sugar, starch, sucrose, NO3--N, and free amino acid were significantly higher in rhizomes of the YZ than those of the WY and AD (P < 0.05). The activities of glutamine synthetase (GS), glutamate dehydrogenase (GDH) and sucrose phosphate synthase (SPS) of the YZ were the highest among all three germplasm, with values of 17.73 A·g- 1 h- 1, 5.96 µmol·g- 1 min- 1, and 11.35 mg·g- 1 h- 1, respectively. Metabolomics analyses revealed that a total of 28 differentially expressed metabolites (DEMs) were up-regulated, and 25 DEMs were down-regulated in both comparison groups (AD vs. YZ group and WY vs. YZ group). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis demonstrated that metabolites related to histidine metabolism, tyrosine metabolism, tryptophan metabolism, and phenylalanine metabolism were associated with rhizomes carbon and nitrogen metabolism. CONCLUSIONS: Overall, the results suggest that soluble sugar, starch, sucrose, NO3--N, and free amino acid in rhizome are important to and promote rhizome expansion in Kentucky bluegrass, while tryptamine, 3-methylhistidine, 3-indoleacetonitrile, indole, and histamine may be key metabolites in promoting carbon and nitrogen metabolism of rhizome.


Asunto(s)
Poa , Rizoma , Rizoma/metabolismo , Poa/metabolismo , Carbono/metabolismo , Kentucky , Nitrógeno/metabolismo , Sacarosa/metabolismo , Aminoácidos/metabolismo , Almidón/metabolismo
10.
Molecules ; 28(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37049673

RESUMEN

One new dibenzyltyrolactone lignan dysoslignan A (1), three new arylnaphthalide lignans dysoslignan B-C (2-4), along with fourteen known metabolites (5-18), were isolated from the roots and rhizomes of Dysosma versipellis. Their structures and stereochemistry were determined from analysis of NMR spectroscopic and circular dichroism (CD) data. Compound 2 represents the first report of naturally occurring arylnaphthalide lignan triglycoside. The cytotoxic activities of all isolated compounds were evaluated against A-549 and SMMC-7721 cell lines. Compounds 7-10 and 14-16 were more toxic than cisplatin in two tumor cell lines. This investigation clarifies the potential effective substance basis of D. versipellis in tumor treatment.


Asunto(s)
Berberidaceae , Lignanos , Raíces de Plantas , Rizoma , Células A549 , Antineoplásicos/efectos adversos , Antineoplásicos/toxicidad , Berberidaceae/química , Berberidaceae/metabolismo , Dicroismo Circular , Cisplatino/efectos adversos , Cisplatino/toxicidad , Lignanos/química , Lignanos/aislamiento & purificación , Lignanos/metabolismo , Lignanos/toxicidad , Espectroscopía de Resonancia Magnética , Neoplasias/tratamiento farmacológico , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Rizoma/química , Rizoma/metabolismo , Línea Celular Tumoral
11.
Molecules ; 28(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903481

RESUMEN

Polygonati Rhizoma is the dried rhizome of Polygonatum kingianum coll.et hemsl., Polygonatum sibiricum Red. or Polygonatum cyrtonema Hua, and has a long history of medication. Raw Polygonati Rhizoma (RPR) numbs the tongue and stings the throat, while prepared Polygonati Rhizoma (PPR) can remove the numbness of the tongue, and at the same time enhance its functions of invigorating the spleen, moistening the lungs and tonifying the kidneys. There are many active ingredients in Polygonati Rhizoma (PR), among which polysaccharide is one of the most important active ingredients. Therefore, we studied the effect of Polygonati Rhizoma polysaccharide (PRP) on the lifespan of Caenorhabditis elegans (C. elegans) and found that polysaccharide in PPR (PPRP) was more effective than Polysaccharide in RPR (RPRP) in prolonging the lifespan of C. elegans, reducing the accumulation of lipofuscin, and increasing the frequency of pharyngeal pumping and movement. The further mechanism study found that PRP can improve the anti-oxidative stress ability of C. elegans, reduce the accumulation of reactive oxygen species (ROS) in C. elegans, and improve the activity of antioxidant enzymes. The results of quantitative real-time PCR(q-PCR) experiments suggested that PRP may prolong the lifespan of C. elegans by down-regulating daf-2 and activating daf-16 and sod-3, and the transgenic nematode experiments were consistent with its results, so it was hypothesized that the mechanism of age delaying effect of PRP was related to daf-2, daf-16 and sod-3 of the insulin signaling pathway. In short, our research results provide a new idea for the application and development of PRP.


Asunto(s)
Proteínas de Caenorhabditis elegans , Polygonatum , Animales , Caenorhabditis elegans , Longevidad , Rizoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Polisacáridos/farmacología , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/metabolismo
12.
J Environ Manage ; 332: 117340, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36716543

RESUMEN

To identify key species associated with pyrene degradation in Vallisneria natans (V.natans) rhizosphere sediment, this work investigated the temporal and spatial changes in the rhizosphere microbial community and the relationship between the changes and the pyrene degradation process through a three-compartment rhizome-box experiment under pyrene stress. The degradation kinetics of pyrene showed that the order of degradation rate was rhizosphere > near-rhizosphere > non-rhizosphere. The difference in the pyrene degradation behavior in the sediments corresponded to the change in the proportions of dominant phyla (Firmicutes and Proteobacteria) and genera (g_Massilia f_Comamonadaceae, g_Sphingomonas). The symbiosis networks and hierarchical clustering analysis indicated that the more important phyla related to the pyrene degradation in the rhizosphere was Proteobacteria, while g_Sphigomonas, f_Comamonadaceae, and especially g_Massilia were the core genera. Among them, f_Comamonadaceae was the genus most affected by rhizosphere effects. These findings strengthened our understanding of the PAHs-degradation microorganisms in V.natans rhizosphere and are of great significance for enhancing phytoremediation on PAHs-contaminated sediment.


Asunto(s)
Hydrocharitaceae , Microbiota , Hidrocarburos Policíclicos Aromáticos , Rizoma/metabolismo , Pirenos/metabolismo , Hydrocharitaceae/metabolismo , Biodegradación Ambiental
13.
BMC Genomics ; 23(1): 753, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36384450

RESUMEN

BACKGROUND: Continuous tilling and the lateral growth of rhizomes confer rhizomatous grasses with the unique ability to laterally expand, migrate and resist disturbances. They play key roles especially in degraded grasslands, deserts, sand dunes, and other fragile ecological system. The rhizomatous plant Leymus secalinus has both rhizome buds and tiller buds that grow horizontally and upward at the ends of rhizome differentiation and elongation, respectively. The mechanisms of rhizome formation and differentiation in L. secalinus have not yet been clarified. RESULTS: In this study, we found that the content of gibberellin A3 (GA3) and indole-3-acetic acid (IAA) were significantly higher in upward rhizome tips than in horizontal rhizome tips; by contrast, the content of methyl jasmonate and brassinolide were significantly higher in horizontal rhizome tips than in upward rhizome tips. GA3 and IAA could stimulate the formation and turning of rhizomes. An auxin efflux carrier gene, LsPIN1, was identified from L. secalinus based on previous transcriptome data. The conserved domains of LsPIN1 and the relationship of LsPIN1 with PIN1 genes from other plants were analyzed. Subcellular localization analysis revealed that LsPIN1 was localized to the plasma membrane. The length of the primary roots (PRs) and the number of lateral roots (LRs) were higher in Arabidopsis thaliana plants overexpressing LsPIN1 than in wild-type (Col-0) plants. Auxin transport was altered and the gravitropic response and phototropic response were stronger in 35S:LsPIN1 transgenic plants compared with Col-0 plants. It also promoted auxin accumulation in root tips. CONCLUSION: Our findings indicated that LsPIN1 plays key roles in auxin transport and root development. Generally, our results provide new insights into the regulatory mechanisms underlying rhizome development in L. secalinus.


Asunto(s)
Arabidopsis , Rizoma , Rizoma/metabolismo , Ácidos Indolacéticos/metabolismo , Poaceae/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo
14.
Biol Futur ; 73(3): 327-334, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35943700

RESUMEN

In this study, silver nanoparticles were synthesized using Alpinia officinarum rhizome extract via an eco-friendly green synthesis method. The silver nanoparticles (AO-AgNPs) were characterized by UV-Vis spectrometry, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and dynamic light scattering. Further, the cytotoxic and apoptotic effects of AO-AgNPs were investigated in human cancer cells with different tissue origins via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and flow cytometric analyses, respectively. The expression levels of anti-apoptotic Bcl-2 protein were evaluated via a real-time polymerase chain reaction. The synthesized AO-AgNPs induced a significant cytotoxic effect in all tested cancer cells but not in normal cells. AO-AgNPs induced the percentage of apoptotic cells and reduced the levels of anti-apoptotic Bcl-2 mRNA levels in cancer cells. These results demonstrate the potential application of AO-AgNPs in cancer treatment.


Asunto(s)
Alpinia , Antineoplásicos , Nanopartículas del Metal , Neoplasias , Alpinia/metabolismo , Antineoplásicos/farmacología , Apoptosis , Bromuros/farmacología , Humanos , Nanopartículas del Metal/uso terapéutico , Extractos Vegetales/farmacología , ARN Mensajero/farmacología , Rizoma/metabolismo , Plata/farmacología
15.
J Ethnopharmacol ; 298: 115612, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35987409

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic dermatopathy is one of the most serious and common complications of diabetes. It has been found that high glucose can lead to abnormal glycometabolism. The skin microenvironment pollution caused by the increase in glucose and the oxidative stress mediated by the deposition of advanced glycation end products can lead to invisible skin injury, and the interaction between them is the key factor that makes the skin wounds of diabetic rats difficult to heal. Therefore, the main task of promoting healing is to reduce blood glucose levels and relieve the deposition of advanced glycation end products. Polygonatum kingianum Collett & Hemsl (PK) of Asparagaceae is planted in Yunnan, China, and is used by the Bai, Hani and Wa nationalities as a traditional medicine for preventing and treating diabetes. AIM OF THE STUDY: To study the effects of PK extract on skin wound healing in diabetic rats and to explore the regulatory mechanism of PK on wound microenvironment pollution, the antioxidative stress signaling pathway and latent injury of wound skin tissue. METHODS: First, wounds were prepared after diabetic rats were given PK extract by gavage for 4 weeks, and then gavage was continued for 2 weeks to observe and calculate the wound healing rate. A scanning electron microscope was used to observe the pathomorphological changes in the skin tissue at the edge of the wound. Western blotting was used to detect protein expression. Immunohistochemistry was used to detect the expression of CD34, AGEs, bFGF and VEGF. The Nrf2/HO-1 signaling pathway in skin tissue was detected by fluorescence quantitative PCR. Serum biochemical indicators and inflammatory cytokine levels were detected by a kit. RESULTS: After PK treatment, the wound healing rate increased significantly (P < 0.001), the infiltration of inflammatory cells in skin tissue of DM lesion rats decreased, the number of new blood vessels increased, and the epidermis and dermis thickened. The content of glucose, AGEs, RAGE protein and RAGE mRNA in skin decreased significantly (P < 0.05, P < 0.01, P < 0.001), while the expression of Nrf2 mRNA, HO-1 mRNA, CD34, bFGF and VEGF increased significantly (P < 0.05, P < 0.01, P < 0.001). The levels of SOD, GSH, MMP-9 and MMP-2 in skin decreased (P < 0.05, P < 0.01, P < 0.001), but the level of TIMP-2 increased (P < 0.001). GSP, GHb and ICAM-1 in plasma decreased (P < 0.05, P < 0.01, P < 0.001), while T-AOC, SOD and FINS increased (P < 0.05, P < 0.01). The levels of MDA, TNF-, IL-6, IL-2 and IFN-γ in plasma and wound skin tissue decreased (P < 0.05, P < 0.01, P < 0.001). CONCLUSION: PK can reduce the infiltration of inflammatory cells and glucose content in the skin tissue at the edge of the wound, reduce inflammatory factors in skin and plasma, and increase angiogenesis, thus improving the wound healing rate. PK can alleviate the microenvironment pollution caused by AGEs and glucose metabolism disorder in diabetic rats and induce antioxidant activity through the Nrf 2/HO-1 signaling pathway, thus reducing oxidative damage and offsetting endogenous skin damage and hidden damage.


Asunto(s)
Diabetes Mellitus Experimental , Polygonatum , Animales , China , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucosa/farmacología , Productos Finales de Glicación Avanzada/metabolismo , Factor 2 Relacionado con NF-E2 , Polygonatum/metabolismo , ARN Mensajero , Ratas , Rizoma/metabolismo , Superóxido Dismutasa , Factor A de Crecimiento Endotelial Vascular/genética , Cicatrización de Heridas
16.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012254

RESUMEN

Curcuma comosa has been used in traditional Thai medicine to treat menstrual cycle-related symptoms in women. This study aims to evaluate the diarylheptanoid drug modulator, trans-1,7-diphenyl-5-hydroxy-1-heptene (DHH), in drug-resistant K562/ADR human leukemic cells. This compound was studied due to its effects on cell cytotoxicity, multidrug resistance (MDR) phenotype, P-glycoprotein (P-gp) expression, and P-gp function. We show that DHH itself is cytotoxic towards K562/ADR cells. However, DHH did not impact P-gp expression. The impact of DHH on the MDR phenotype in the K562/ADR cells was determined by co-treatment of cells with doxorubicin (Dox) and DHH using an MTT assay. The results showed that the DHH changed the MDR phenotype in the K562/ADR cells by decreasing the IC50 of Dox from 51.6 to 18.2 µM. Treating the cells with a nontoxic dose of DHH increased their sensitivity to Dox in P-gp expressing drug-resistant cells. The kinetics of P-gp mediated efflux of pirarubicin (THP) was used to monitor the P-gp function. DHH was shown to suppress THP efflux and resulted in enhanced apoptosis in the K562/ADR cells. These results demonstrate that DHH is a novel drug modulator of P-gp function and induces drug accumulation in the Dox-resistant K562 leukemic cell line.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Antineoplásicos , Curcuma , Diarilheptanoides , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antineoplásicos/farmacología , Apoptosis , Compuestos de Bifenilo , Curcuma/química , Diarilheptanoides/farmacología , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Humanos , Células K562 , Rizoma/metabolismo
17.
Int J Mol Sci ; 23(14)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35886954

RESUMEN

Internode starch biosynthesis is one of the most important traits in lotus rhizome because of its relation to crop productivity. Understanding the microRNA (miRNA) and mRNA expression profiles related to lotus internode starch biosynthesis would help develop molecular improvement strategies, but they are not yet well-investigated. To identify genes and miRNAs involved in internode starch biosynthesis, the cDNA and small RNA libraries of Z6-1, Z6-2, and Z6-3 were sequenced, and their expression were further studied. Through combined analyses of transcriptome data and small RNA sequencing data, a complex co-expression regulatory network was constructed, in which 20 miRNAs could modulate starch biosynthesis in different internodes by tuning the expression of 10 target genes. QRT-PCR analysis, transient co-expression experiment and dual luciferase assay comprehensively confirmed that NnumiR396a down-regulated the expression of NnSS2 and ultimately prevents the synthesis of amylopectin, and NnumiR396b down-regulated the expression of NnPGM2 and ultimately prevents the synthesis of total starch. Our results suggest that miRNAs play a critical role in starch biosynthesis in lotus rhizome, and that miRNA-mediated networks could modulate starch biosynthesis in this tissue. These results have provided important insights into the molecular mechanism of starch biosynthesis in developing lotus rhizome.


Asunto(s)
Lotus , MicroARNs , Nelumbo , Perfilación de la Expresión Génica/métodos , Lotus/genética , MicroARNs/genética , MicroARNs/metabolismo , Nelumbo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rizoma/genética , Rizoma/metabolismo , Análisis de Secuencia de ARN , Almidón/metabolismo
18.
J Ethnopharmacol ; 296: 115517, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35777608

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rhizoma Dioscoreae (RD) is the rhizome of Dioscorea opposita Thunb., a traditional Chinese medicine, which can treat hypertension, diabetes, cerebral vasospasm headache and Alzheimer's disease. Meanwhile, RD is the main component of Liuwei Dihuang pill, a Chinese patent medicine. Rhizoma Dioscoreae polysaccharides (RDPS) are the primary active ingredient of RD. Modern medical research confirmed RDPS has multiple pharmacological effects, including neuroprotection, immunoregulation, antioxidant effect in many organs. The primary ischemia/hypoxia injury and secondary reperfusion injury are mainly caused by oxidative stress, which caused by hypoxia, such as free radical generation, energy metabolism disorder, intracellular calcium overload, excitatory amino acid release and inflammatory reaction. AIM OF THE STUDY: We have investigated the pharmacodynamic effect of RDPS on cerebral ischemia-reperfusion (IR) injury in rats and the possible mechanism in vitro. MATERIALS AND METHODS: The pharmacodynamic effect of RDPS on IR injury in rats was studied by the construction of the occlusion of middle cerebral artery (MCAO) model, measuring the volume of cerebral infarct area, the content of oxidation index, inflammatory cytokines, and the expression of CaMMKß in brain tissue. The in vitro study was explored by oxygen-glucose deprivation/glycogen reoxygenation (OGD/R) model, construction of the CaMMKß interference sequence, measuring the expression of CaMMKß in BV2 cells before and after inhibition of CaMMKß, and the influence of RDPS on Nrf2/HO-1 signal pathway, in order to investigate the possible mechanism. RESULTS: Compared with the model group, the present study showed that RDPS with high-dose and low-dose groups could significantly reduce the volume of cerebral infarction. The content of MDA decreased and the activities of GSH and SOD increased in the two dose groups of RDPS. We confirmed that after RDPS treatment, the levels of IL-6, IL-1 ß and TNF-α in brain tissue were lower than those in model group, and the expression of CaMMKß in brain tissue of rats decreased in the model group, but increased in the groups of RDPS. In the in vitro study, compared with the control group, RDPS could regulate the OGD/R-induced apoptosis of BV2 cells and increase the level of CaMMKß, Nrf2 and HO-1 induced by OGD/R. To our surprise, these therapeutic effects are no longer present after the inhibition of CaMMKß protein. The activity of BV2 induced by OGD/R could not be enhanced by RDPS after the inhibition of CaMMKß protein. CONCLUSIONS: RDPS has the pharmacodynamic effect in IR injury, which reduce the area of cerebral infarction, up-regulate the activity of anti-oxidant kinase, and down-regulate the inflammatory cytokine. Additionally, RDPS could affect the activation of Nrf2/HO-1 signaling pathway by regulating the expression of CaMMKß. Our observations justify the RDPS could be a new strategy for IR injury therapy, and the mechanism may be related to the improvement of antioxidant enzyme activity and inhibition of inflammatory reaction.


Asunto(s)
Isquemia Encefálica , Fármacos Neuroprotectores , Daño por Reperfusión , Animales , Antioxidantes/farmacología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Citocinas/metabolismo , Glucosa/metabolismo , Hipoxia/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/metabolismo , Rizoma/metabolismo
19.
Plant Mol Biol ; 110(1-2): 23-36, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35648325

RESUMEN

KEY MESSAGE: QTL mapping studies identified three reliable QTLs of rhizome enlargement in lotus. NnBEL6 located within the confidence interval of the major QTL cqREI-LG2 is a key candidate gene enhancing rhizome enlargement. Lotus (Nelumbo) is perennial aquatic plant with nutritional, pharmacological, and ornamental significance. Rhizome is an underground lotus stem that acts as a storage organ and as a reproductive tissue for asexual production. The enlargement of lotus rhizome is an important adaptive strategy for surviving the cold winter. The aims of this study were to identify quantitative trait loci (QTLs) for rhizome enlargement traits including rhizome enlargement index (REI) and number of enlarged rhizome (NER), and to uncover their associated candidate genes. A high-density genetic linkage map was constructed, consisting of 2935 markers binned from 236,840 SNPs. A total of 14 significant QTLs were detected for REI and NER, which explained 6.7-22.3% of trait variance. Three QTL regions were repeatedly identified in at least 2 years, and a major QTL, designated cqREI-LG2, with a rhizome-enlargement effect and about 20% of the phenotypic contribution was identified across the 3 climatic years. A candidate NnBEL6 gene located within the confidence interval of cqREI-LG2 was considered to be putatively involved in lotus rhizome enlargement. The expression of NnBEL6 was exclusively induced by rhizome swelling. Sequence comparison of NnBEL6 among lotus cultivars revealed a functional Indel site in its promoter that likely initiates the rhizome enlargement process. Transgenic potato assay was used to confirm the role of NnBEL6 in inducing tuberization. The successful identification QTLs and functional validation of NnBEL6 gene reported in this study will enrich our knowledge on the genetic basis of rhizome enlargement in lotus.


Asunto(s)
Lotus , Nelumbo , Mapeo Cromosómico , Lotus/genética , Nelumbo/genética , Sitios de Carácter Cuantitativo/genética , Rizoma/genética , Rizoma/metabolismo
20.
J Exp Bot ; 73(16): 5671-5681, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35595538

RESUMEN

Plants have evolved complex mechanisms to reprogram growth in response to drought stress. In herbaceous perennial plant species, the rhizome, which is normally an organ for propagation and food storage, can also support plant growth in stressful environments, and allows the plant to perennate and survive stress damage. However, the mechanisms that regulate rhizome growth in perennial herbs during abiotic stresses are unknown. Here, we identified a chrysanthemum (Chrysanthemum morifolium) DEAD-box RNA helicase gene, CmRH56, that is specifically expressed in the rhizome shoot apex. Knock down of CmRH56 transcript levels decreased the number of rhizomes and enhanced drought stress tolerance. We determined that CmRH56 represses the expression of a putative gibberellin (GA) catabolic gene, GA2 oxidase6 (CmGA2ox6). Exogenous GA treatment and silencing of CmGA2ox6 resulted in more rhizomes. These results demonstrate that CmRH56 suppresses rhizome outgrowth under drought stress conditions by blocking GA biosynthesis.


Asunto(s)
Chrysanthemum , Sequías , Chrysanthemum/genética , Chrysanthemum/metabolismo , ARN Helicasas DEAD-box/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rizoma/genética , Rizoma/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...